
Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

1 | P a g e

In this episode we are going to continue on from the last episode where we were looking at how the

TMS9918A graphics chip displays tile graphics, making a bit of a graphical demo in the process.

As well as tiles the TMS processor allows 32 sprites to be displayed on top of the current back ground.

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

2 | P a g e

The sprites can either be in one of four modes:

• 8x8 pixels

• 16x16 pixels

• 8x8 pixels magnified

• 16x16 pixels magnified

This mode applies to all sprites in use i.e. you cannot mix and match.

Each sprite can be set to one of the 15 available colours, if you want multi-coloured sprites then you

need to place multiple sprites on top of each other e.g.

All 32 sprites can be on screen at the same time, but only the 1st four displayed on any row will show on

screen i.e. the fifth sprite displayed on a row will not be drawn.

This will cause some of your sprites to disappear or flicker as they move past other sprites.

The example libraries that have been supplied already include code to allow up to 8 sprites per line, but

changing the order the sprites are drawn each alternate frame.

The human eye will not even notice the minor flickering this introduces so this works quite well. But still

means there is an upper limit of eight sprites in a row, so you need to take this into account when

designing your games.

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

3 | P a g e

Using Sprites
TMS Sprites are quite easy to use, each of the 32 sprites are controlled using four bytes of video ram

(and called the sprite control table) as follows:

Byte 1 – sprite Y position (0-255)

Byte 2 – sprite X position (0-255)

Byte 3 – sprite pattern number (0-255)

Byte 4 – sprite colour (0-15)

Rather than having to deal with reading and writing the sprite control table in video ram, I like to have a

copy of the table in normal Z80 Ram, and copy it to video ram each vertical blank.

This also simplifies your code greatly as you don’t have to worry about when you can change a sprite

value.

And with the supplied routines it also automatically allows 8 sprites per line by reversing the draw order

of the sprites every 2nd frame as part of the routine to update video ram.

To make a sprite disappear from the screen i.e. not be drawn then it’s Y co-ordinate can be set to 209.

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

4 | P a g e

On with Our Demo
Now let’s extend the graphics demo from the last episode and have all 32 sprites on screen moving

around so that we can see this in effect.

Sprite shapes
We are going to use 16x16 sprites for our demo and I have included four shape designs as follows:

We need to add these to our file ending with “-Patterns.asm”, you can either cut and paste the code

below or use the Sprite Editor to output the file from the supplied “TMSDemo.spr” file.

SPRITE_1:

; Sprite sprite_1 pattern 1

db 003,012,016,042,074,064,186,147

db 146,146,082,064,042,026,012,003

db 192,048,008,164,170,002,077,209

db 073,069,090,002,172,168,048,192

SPRITE_1:

; Sprite sprite_1 pattern 1

db 003,012,016,037,085,064,164,189

db 164,164,101,064,053,021,012,003

db 192,048,008,084,082,002,209,017

db 145,065,146,002,084,088,048,192

SPRITE_1:

; Sprite sprite_1 pattern 1

db 003,012,016,042,074,064,154,162

db 146,136,114,064,042,026,012,003

db 192,048,008,164,170,002,117,039

db 037,037,038,002,172,168,048,192

SPRITE_1:

; Sprite sprite_1 pattern 1

db 003,012,016,037,085,064,167,162

db 162,130,098,064,053,021,012,003

db 192,048,008,084,082,002,073,121

db 073,073,074,002,084,072,048,192

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

5 | P a g e

Loading Sprite Patterns
Next, we need to load the sprite pattern data into Video Ram so that we can use them in our sprites.

; Send the sprite definitions to the VDP

LOAD_SPRITES:

 LD HL,VRAM_SPRGEN

 LD DE,SPRITE_1

 LD BC,32*SPRITECOUNT

 CALL LDIRVM

 RET

The TMS processor allows us to have 256 8x8 patterns that can be used for our sprites. When we use

16x16 sprites, each sprite needs four patterns that are one after each other, as you can only specify the

pattern number of the 1st pattern. The TMS processor then assumes the other three patterns are the

next three patterns after the one you specify.

In our main code file, we need to update the SPRITECOUNT value to equal the number of sprite patterns

we have i.e. 4

SPRITECOUNT: EQU 4

And of course, we need to call the new routine above, which we might as well do just after we load the

character tiles as follows:

 ; Load the character set, make all three sections the same

 CALL LOAD_CHR_SET

 ; Load our sprite patterns

 CALL LOAD_SPRITES

Draw Our Sprites
Next, we need to put our sprites on screen, so to start with let’s display all 32 of them in a rough circle

on the screen.

The easiest way to do this is to have a set of data and copy it to our sprite table, so add the following

data section to our main code file:

; Place our sprites on screen

PLACE_SPRITES:

 LD HL,SPRITE_PLACEMENT

 LD DE,SPRTBL

 LD BC,32*4

 LDIR

 RET

; Sprite placement data

SPRITE_PLACEMENT:

db 096,048,0,01

db 080,056,0,02

db 064,064,0,03

db 048,072,0,04

db 040,088,0,05

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

6 | P a g e

db 032,104,0,06

db 024,120,0,07

db 032,136,0,08

db 040,152,0,09

db 048,168,0,10

db 064,176,0,11

db 080,184,0,12

db 096,192,0,13

db 110,184,0,14

db 124,176,0,15

db 140,168,0,01

db 148,152,0,02

db 156,136,0,03

db 164,120,0,04

db 156,104,0,05

db 148,088,0,06

db 140,072,0,07

db 124,064,0,08

db 110,056,0,09

db 096,048,0,10

db 172,056,0,11

db 172,104,0,12

db 172,136,0,13

db 172,184,0,14

db 008,056,0,15

db 008,120,0,01

db 008,184,0,02

And after the CALL LOAD_SPRITES command above add a call to the placement routine as follows:

 ; place the sprites on the screen in their initial positions

 CALL PLACE_SPRITES

Build the code and run in the emulator and you should get something like this:

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

7 | P a g e

Animate Our Sprites
Now, lets make things a bit more interesting and animate our sprites by making them cycle through a

few different patterns a couple of times a second.

This is also a good example of how to use the timing code included in the sample templates.

In our template we have a section of code that will be executed two times a second, add the following

code there, but change from the HalfSecTimer to the QtySecTimer i.e. we want our change to happen

four times a second instead of two:

SPLASH_TITLE2:

 LD A,(QtrSecTimer)

 CALL TEST_SIGNAL

 OR A

 JR Z, SPLASH_TITLE2

 ; animate our sprite shapes

 LD HL,ANIMATION_TABLE

 LD B,0

 LD A,(ANIMATION_STEP)

 LD C,A

 ADC HL,BC

 LD A,(HL)

 CP 255

 JR NZ,UL1

 ; we have reached the end of our animation table

 XOR A

 LD (ANIMATION_STEP),A

 LD A,(ANIMATION_TABLE)

UL1:

 LD HL,SPRTBL+2

 LD B,32

UL2:

 LD (HL),A

 INC HL

 INC HL

 INC HL

 INC HL

 DJNZ UL2

 ; increment our animation step

 LD HL,ANIMATION_STEP

 INC (HL)

 JR SPLASH_TITLE2

ANIMATION_TABLE:

 DB 0,4,8,12,255

We need to declare the bit of Ram we are using for our ANIMATION_STEP variable as follows:

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

8 | P a g e

ORG RAMSTART

WAIT: ds 1

LASTPATTERN1: ds 1

LASTPATTERN2: ds 1

LASTPATTERN3: ds 1

ANIMATION_STEP: ds 1

And we must always remember to initialise any variables to a known value in our INITRAM function as

follows:

INITRAM:

 LD A,204

 LD (LASTPATTERN1),A

 XOR A

 LD (LASTPATTERN2),A

 LD (ANIMATION_STEP),A

Build the rom and give it a go in the emulator, you should now see our sprites animating.

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

9 | P a g e

Move Our Sprites
To finish off let’s make the sprites move around the screen. To make things simple, we will make each

sprite move in a random direction.

Now we need to add a data table to hold each of our sprite X & Y velocities i.e how much they are going

to move and which way.

So, add a new RAM space (after ORG RAMSTART) as follows:

SPRITE_VELOCITY: DS 64

Now let’s add a function to set our random X & Y velocities as follows:

; Set our sprite velocities

SET_VELOCITY:

 LD HL,SPRITE_VELOCITY

 LD B,32

SV1:

 CALL RND

 LD C,A

 AND %00000111

 INC A

 BIT 7,C

 LD (HL),A

 JR Z,SV2

 LD A,255

 SUB (HL)

 LD (HL),A

SV2:

 INC HL

 CALL RND

 AND %00000111

 INC A

 BIT 7,C

 LD (HL),A

 JR Z,SV3

 LD A,255

 SUB (HL)

 LD (HL),A

SV3:

 INC HL

 DJNZ SV1

 RET

Call this new routine, just after the CALL PLACE_SPRITES we added earlier as follows:

 CALL PLACE_SPRITES

 CALL SET_VELOCITY

Let’s Make a Retro Game
Episode 15 – TMS9918A Graphics - Sprites

10 | P a g e

Now let’s add a function to move the sprites based on their current velocity:

; Move our sprites based in their velocity

MOVE_SPRITES:

 LD HL,SPRTBL

 LD DE,SPRITE_VELOCITY

 LD B,32

MS1:

 LD A,(DE)

 LD C,A

 LD A,(HL)

 ADD A,C

 LD (HL),A

 INC HL

 INC DE

 LD A,(DE)

 LD C,A

 LD A,(HL)

 ADD A,C

 LD (HL),A

 INC HL

 INC DE

 INC HL

 INC HL

 DJNZ MS1

 RET

And we call it just after our animation code from above as follows:

 LD HL,ANIMATION_STEP

 INC (HL)

 CALL MOVE_SPRITES

 JR SPLASH_TITLE2

If you build and run that you should see all 32 sprites moving in different directions and speeds.

You can play around with the original placement data and try modifying the code that sets the velocities

to get different movement patterns.

That’s all for this episode, next time we start covering sound, so we can add sound effects to our game.

