
Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

1 | P a g e

In this episode we are going to cover some more technical details on some of the platforms we are

targeting, specifically how graphics are handled on the following systems:

• Colecovision

• MSX

• Spectravideo

• Sega SG-1000/SC-3000

This information can also cover:

TI-99/4A, Memotech MTX, Creativision (Dick Smith Wizzard), Einstein, Sord M5

Each of these systems have a main processor (all bar one uses a Z80A CPU) with their own RAM, but this

processor does not handle anything to do with creating output on the screen i.e. graphics. To do that all

these systems actually have a 2nd CPU from Texas Instruments called the TMS9918A.

The TMS processor has its own RAM area, often called VRAM (for Video Ram), key points to understand

how this works are:

• The TMS Processor has direct access to only to its own RAM, and

• Likewise, the Z80 only has direct access to its RAM

So unlike other machines, like the Commodore 64 and Spectrum you can’t just write a value to a

memory location and it will change what happens on the screen.

So, for your code to control what is happening on the screen, the TMS processor has a number of ports

(think of them as serving windows) that you use to send information to or receive information from the

video ram.

 Control Port Data Port

RAM

Video

RAM

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

2 | P a g e

This may seem strange, especially to programmers of other systems, but it is actually modelled on how a

lot of arcade games were created, with different processors controlling different things, like video and

sound.

The advantages of this are:

• The main processor i.e. the Z80 does not have to do anything to draw the screen each frame.

• The main processor does not have to share it’s Ram with anything so there is no delay accessing

the Ram at any stage.

• The video ram is completely dedicated to the TMS processor, and with 16k reasonably high

resolution (for 8-bit standards), colour and of course 32 hardware sprites, very faithful

recreations of early arcade games are possible.

The disadvantages of this are:

• There are limits to how fast information can be sent to or read from video using the ports to the

TMS processor, so you can’t change large amounts of video ram each frame. This is why

scrolling can be difficult to achieve on TMS based systems.

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

3 | P a g e

Video Ram Break Down
The TMS processor actually has a number of different modes available as follows:

Graphics Modes I & II
These two modes have a screen resolution of 256 x 192 pixels, broken up into 8 x 8 pixel tiles i.e 32 x 24

or 768 tiles.

Each tile has 8 bytes of Ram that define the pattern or shape e.g.

00011000

00111100

01111110

11011011

11111111

00100100

01011010

10100101

Graphics Mode I only has one table of 256 tiles that are used for the whole screen, whereas Mode II has

768 tile patterns, so each tile can be unique.

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

4 | P a g e

How each mode handles colour is different as well.

• Mode I groups each of the tile patterns into blocks of 8, each of these blocks have the same

foreground and background colour.

• Mode II has another 8 bytes for each pattern. Each of the bytes describes the foreground and

background colour for a row of the pattern.

The two modes seem similar but differ greatly in the amount of colour and pattern detail that can be

displayed.

Mode I harks back to when memory was more expensive, and if the TMS chip is only supplied with 4K of

Video Ram.

Mode II uses 12k just for the patterns and colour information, it needs more to hold the pattern

positions and sprite table.

Both of these modes support the 32 hardware sprites.

Text Mode
Text Mode is just that designed purely to display text, and can display 40 columns across 24 rows, a total

of 960 tiles. The patterns for each of the tiles come from a table of 256 patterns.

Each tile has 8 bytes of Ram that define the shape but only the most significant 6 bits (the right 8 bits)

define the pattern e.g.

XX001100

XX010010

XX010010

XX100001

XX111111

XX100001

XX100001

XX100001

The positions marked with an X are ignored.

There is only a single foreground and background colour for the whole screen and sprites are not

available in this mode.

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

5 | P a g e

Multicolour Mode
The Multicolour Mode is quite different from the other modes in that it allows unrestricted use of the 16

available colours, but at a much lower resolution of 64 x 48 pixels.

Sprites are also available in this mode.

Hardware Sprites
In all modes (other than text mode), 32 hardware sprites are available, these sit in order in front of the

graphics/background layer.

All sprites can be either 8x8 or 16x16 pixels in size, plus also can be displayed double size i.e. the pixels

are doubled in size.

Each sprite can be a different one of the 15 colours. Multi-coloured sprites are created by stacking

multiple sprites on top of each other.

There can be a maximum of four sprites displayed in a row on the screen, but with some tricks up to

eight in a row can be achieved with minor flickering.

These hardware sprites, along with the high resolution of the background tiles, are what allow TMS

systems to cover early 80’s arcade games so well.

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

6 | P a g e

Example Code – TMS Demo
For this episode we will not advance the game we have been working on but instead have a look at

some examples of what the TMS graphics chip can do i.e. a demo.

In our starting directory we have our base template for each system, along with a set of tile patterns to

get us started.

Compiling and running this starting template in our emulator should get you a simple start-up screen

with a title as follows:

Let’s add some things to our template, nothing fancy just a couple of items that will help visualise how

the TMS chip uses its video memory to draw the display and some simple techniques to add some nice

visual effects.

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

7 | P a g e

Animating a tile pattern
For the top 256 tile positions of our screen we are going to set them all to be the same pattern (in this

case tile pattern 69). Add this section of code after the label TITLESCREEN: and after the highlighted text

below:

 ; now setup our initial screen layout

 ; top 1/3 of the screen

 LD HL,VRAM_NAME

 LD BC,256

 LD A,69

 CALL FILVRM

That’s not that interesting so let’s add some animation, add this code to our interrupt routine:

; This is our routine called every VDP interrupt during the title

screen

; - Do all VDP writes here to avoid corruption

OUTPUT_VDP_TITLE:

 ; do our pattern and colour animations

 LD A,(WAIT)

 CP 0

 JR Z, OVT1

 DEC A

 LD (WAIT),A

 RET

OVT1:

 LD A,8

 LD (WAIT),A

 ; 1. animate the pattern in tile 69

 LD HL,69*8

 CALL SETWRT

 LD B,4

 LD A,(LASTPATTERN1)

LP1:

 OUT (DATA_PORT),A

 OUT (DATA_PORT),A

 XOR 0ffh

 DJNZ LP1

 XOR 0ffh

 LD (LASTPATTERN1),A

 RET

We need to reserve two bytes of ram for our counter and last pattern storage:

ORG RAMSTART

WAIT: ds 1

LASTPATTERN1: ds 1

And it’s always good to initialise it to a known value when we start, in our INITRAM function:

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

8 | P a g e

; Initialise any RAM we will be using

INITRAM:

 LD A,204

 LD (LASTPATTERN1),A

 LD A,8

 LD (WAIT),A

 RET

This will change the pattern being displayed for our tile and thus change all 256 positions at one time,

compile it and give it a go.

You don’t have to just work with a single pattern with a bit of planning you can get quite a nice detailed

animation going with more tiles e.g. 4 tiles arranged 2 x 2.

Animating the colour table
For the middle 256 tile positions of our screen, I used tile pattern 70, which has changing bands of

colour (different shades of red) running down it. Plus, I added a border around our text using tile

pattern 72 as follows:

 ; middle 1/3 of the screen

 LD HL,VRAM_NAME + 256

 LD BC,256

 LD A,70

 CALL FILVRM

 ; our initial text

 LD HL,VRAM_NAME + 32*12 + 10

 CALL SETRD

 LD HL,TITLE_TEXT

 CALL OUTPUT_TEXT

 ; add a box of characters around the text

 LD HL,VRAM_NAME + 256 + 32*2 + 6

 LD BC,20

 LD A,72

 CALL FILVRM

 LD HL,VRAM_NAME + 256 + 32*3 + 6

 CALL SETWRT

 LD A,72

 OUT (DATA_PORT),A

 LD HL,VRAM_NAME + 256 + 32*3 + 25

 CALL SETWRT

 LD A,72

 OUT (DATA_PORT),A

 LD HL,VRAM_NAME + 256 + 32*4 + 6

 CALL SETWRT

 LD A,72

 OUT (DATA_PORT),A

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

9 | P a g e

 LD HL,VRAM_NAME + 256 + 32*4 + 25

 CALL SETWRT

 LD A,72

 OUT (DATA_PORT),A

 LD HL,VRAM_NAME + 256 + 32*5 + 6

 CALL SETWRT

 LD A,72

 OUT (DATA_PORT),A

 LD HL,VRAM_NAME + 256 + 32*5 + 25

 CALL SETWRT

 LD A,72

 OUT (DATA_PORT),A

 LD HL,VRAM_NAME + 256 + 32*6 + 6

 LD BC,20

 LD A,72

 CALL FILVRM

It not only looks nice it also shows the higher resolution colour abilities of the TMS chip.

Now even though that doesn’t look too bad, lets jazz it up by animating the colour bands for tile pattern

70, by adding code to our interrupt routine before the RET statement as follows:

 ; 2. animate the palette entries on the 2nd zone

 LD HL,VRAM_COLOR + 0800h + 70 * 8

 CALL SETWRT

 LD A,(LASTPATTERN2)

 INC A

 CP 3

 JR NZ,OVT2

 XOR A

OVT2:

 LD (LASTPATTERN2),A

 LD HL,COLOURTABLE

 LD C,A

 LD B,0

 XOR A

 ADC HL,BC

 LD A,(HL)

 OUT (DATA_PORT),A

 OUT (DATA_PORT),A

 OUT (DATA_PORT),A

 INC HL

 LD A,(HL)

 OUT (DATA_PORT),A

 OUT (DATA_PORT),A

 OUT (DATA_PORT),A

 INC HL

 LD A,(HL)

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

10 | P a g e

 OUT (DATA_PORT),A

 OUT (DATA_PORT),A

 RET

Just below that add a little bit of data that will control which colours we will cycle through as follows:

COLOURTABLE:

 DB 096,128,144,096,128

We need to reserve a byte of ram for our counter:

ORG RAMSTART

WAIT: ds 1

LASTPATTERN1: ds 1

LASTPATTERN2: ds 1

And once again initialise it to a known value in our INITRAM function:

INITRAM:

 LD A,204

 LD (LASTPATTERN1),A

 XOR A

 LD (LASTPATTERN2),A

More colour table animation
For the last 256 tile positions of our screen, I used tile pattern 71, which has vertical bands as follows:

 ; last 1/3 of the screen

 LD HL,VRAM_NAME + 512

 LD BC,256

 LD A,71

 CALL FILVRM

Let’s add one more piece of code to our interrupt routine as follows:

 ; 3. animate the palette entries in the 3rd zone

 LD A,(LASTPATTERN3)

 ; swap upper and lower number by rotating 4 times

 RLCA

 RLCA

 RLCA

 RLCA

 LD (LASTPATTERN3),A

 LD HL,VRAM_COLOR + 01000h + 71*8

 LD BC,8

 CALL FILVRM

 RET

We need to reserve a byte of ram for our counter:

ORG RAMSTART

Let’s Make a Retro Game
Episode 14 -TMS9918A Graphics

11 | P a g e

WAIT: ds 1

LASTPATTERN1: ds 1

LASTPATTERN2: ds 1

LASTPATTERN3: ds 1

And once again initialise it to a known value in our INITRAM function:

 LD A,045h

 LD (LASTPATTERN3),A

So now by swapping the two colours the tile uses we can introduce an animation, that makes it look like

that section of the screen is scrolling (although depending on how your eyes see it, it will be either going

left to right or right to left ☺).

So now we have ended up with a very simple demo that demonstrates some techniques that can really

jazz up your games on TMS systems. In our next part we will have a proper look at how the TMS

processor handles sprites.

