
Lets Make A Retro Game
Episode 10 – Collision Detection

In this episode we are going to add some simple collision detection so that the bullets our ship is

firing are able to hit and destroy the asteroids that are falling down the screen.

At this stage we only have one type of enemy, which is at a fixed size, but later we will have different

sized asteroids as well as some other enemy types so we need to allow for different size enemy

shapes.

Step One – Object Collision Function
Our first step is to write a function that we can call that works out whether two objects of different

sizes have hit each other.

Now how do we check two objects have hit each other, well it requires a little bit of maths, not too

complicated, but very important.

In interests of simplicity, and processing time, I always treat objects on 8-bit systems as rectangles.

What we are trying to do is work out whether two rectangles intersect as follows:

So in this example 1st step is we see our 2nd object plus it’s width (don’t worry about X and Y at this

stage, it’s the same both ways, just with different values), is less than the position of the 1st object

i.e. the 2nd object is completely to the left of the 1st object.

If it is they can’t be hitting so we exit.

 LD A,(IX+0)

 SUB E

 CP (IY+0)

 JR NC,NOHIT

So the observant may say, hey you are subtracting the width of the 2nd object from the 1st one, not

adding it to the position of the 2nd one? Well we are, just utilising a bit of a maths trick i.e.

X1 = X2 + width

Is the same as

X1 – width = X2

As we subtracted width from both sides.

Next, we see if the 1st object plus it’s width, is less than the position of the 2nd object, just like the

first step if this is true then they can’t be hitting so we exit.

 ADD A,E ; get our original value back

 ADD A,L

X1 X1 + Width1

X2 X2 + Width2

X2 X2 + Width1

X1

 CP (IY+0)

 JR C,NOHIT

So after we have done that we have finished in one direction so the remainder of the code just

repeats for the other coordinate and widths.

 LD A,(IX+1)

 SUB D

 CP (IY+1)

 JR NC,NOHIT

 ADD A,D ; get our original value back

 ADD A,H

 CP (IY+1)

 JR C,NOHIT

So if we make it through this section of code, the two objects have hit each other, so we set the

carry flag and return.

 SCF

 RET

Otherwise we clear the carry flag and return.

NOHIT:

 XOR A

 RET

So our complete function is as follows:

; ===

; Test whether two objects are colliding

; ===

; IX+0 = 1st object Y

; IX+1 = 1st object X

; IY+0 = 2nd object Y

; IY+1 = 2nd object Y

; D = 2nd object width

; E = 2nd object height

; H = 1st object width

; L = 1st object height

; ===

; Result: Carry flag set if two objects collide

; ===

COLTST:

 LD A,(IX+0)

 SUB E

 CP (IY+0)

 JR NC,NOHIT

 ADD A,E ; get our original value back

 ADD A,L

 CP (IY+0)

 JR C,NOHIT

 LD A,(IX+1)

 SUB D

 CP (IY+1)

 JR NC,NOHIT

 ADD A,D ; get our original value back

 ADD A,H

 CP (IY+1)

 JR C,NOHIT

 SCF

 RET

NOHIT:

 XOR A

 RET

Step Two – Bullets Hitting Enemies
So now that we have a collision detection routine, let’s put it to use and see if we can get our bullets

hitting the falling meteors.

This requires a little planning, especially where we are planning a game where there can be quite a

few objects moving on the screen, the last thing we want is for things to start slowing down.

So as the enemies will always be the largest number of things that will be on screen, it’s best that we

only loop around them once, and inside that loop check whether they are hitting any of our other

objects.

Find the existing MOVE_ENEMIES: function the section of code where the meteors are removed as

they hit the bottom of the screen i.e. the label ME3:.

 ; clear enemy data

 XOR A

 LD (HL),A

 ; clear sprite

 LD A,209

ME3:

 LD (IX+0),A

ME2:

For us to insert new code after the ME3: label we need to make sure the ‘clear sprite’ code just

before skips directly to ME2:

 ; clear enemy data

 XOR A

 LD (HL),A

 ; clear sprite

 LD A,209

 LD (IX+0),A

 JR ME2

ME3:

 LD (IX+0),A

So we are repeating the store of the sprite Y value and jumping to ME2 to continue our loop.

Next we need to add some code to check whether a player bullet is on screen before we do a check

for a collision.

ME3:

 LD (IX+0),A

 ; enemy object has been moved now do collision detection

 LD IY,SPRTBL+8 ; bullet y position

 LD A,(IY+0)

 CP 209 ; check that it is on screen

 JR Z,ME2

ME2:

Now we can setup and do our call to the collision test routine. As we need to use both HL and DE to

pass our parameters, we save them to the stack using PUSH (remembering to POP them off when we

are finished). And then call the COLTST routine.

ME3:

 LD (IX+0),A

 ; enemy object has been moved now do collision detection

 LD IY,SPRTBL+8 ; bullet y position

 LD A,(IY+0)

 CP 209 ; check that it is on screen

 JR Z,ME2

 PUSH HL ; save values so we can use the registers

 PUSH DE

 LD HL,0E0Eh ; set our meteor size at 14x14 - will change per enemy type

later

 LD DE,0208h ; set our bullet size at 2x8

 CALL COLTST

 POP DE

 POP HL

 JR NC,ME2

 ; we have a hit, for the moment just make both objects disappear

 LD A,209

 LD (IY+0),A

 LD (IX+0),A

 XOR A

 LD (HL),A ; deactive the enemy

 ; later we will:

 ; - increase the score

 ; - explosion sound

 ; - animate enemy

ME2:

So compiling and running that should now have our bullets being able to hit and remove the

meteors.

Next Episode
Next time we will be adding more collision detection and adding some scoring.

